Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract Reconstructing the history of polar temperature from ice core water isotope (δ18O) calibration has remained a challenge in paleoclimate research, because of our incomplete understanding of various temperature–δ18O relationships. This paper resolves this classical problem in a new framework called the unified slope equations (USE), which illustrates the general relations among spatial and temporalδ18O–surface temperature slopes. The USE is applied to the Antarctica temperature change during the last deglaciation in model simulations and observations. It is shown that the comparable Antarctica-mean spatial slope with deglacial temporal slope inδ18O–surface temperature reconstruction is caused, accidentally, by the compensation responses between theδ18O–inversion layer temperature relation and the inversion layer temperature itself. Furthermore, in light of the USE, we propose that the present seasonal slope ofδ18O–inversion layer temperature is an optimal paleothermometer that is more accurate and robust than the spatial slope. This optimal slope suggests the possibility of reconstructing past Antarctic temperature changes using present and future instrumental observations. Significance StatementThis paper develops a new framework called the unified slope equations (USE) to provide, for the first time, a general relation among various spatial and temporal water isotope–temperature slopes. The application of the USE to Antarctic deglacial temperature change shows that the optimal paleothermometer is the seasonal slope of the inversion layer temperature.more » « less
-
Fisher, E.; Boyd, E.; Brondizio, E. (Ed.)If the success of agricultural intensification continues to rely on the depletion of aquifers and exploitation of (female) labour, transformations to groundwater sustainability will be impossible to achieve. Hence, the development of new groundwater imaginaries, based on alternative ways of organizing society-water relations is highly important. This paper argues that a comparative documentation of grass-roots initiatives to care for, share or recharge aquifers in places with acute resource pressures provides an important source of inspiration. Using a grounded anti-colonial and feminist approach, we combine an ethnographic documentation of groundwater practices with hydrogeological and engineering insights to enunciate, normatively assess and jointly learn from the knowledges, technologies and institutions that characterize such initiatives. Doing this usefully shifts the focus of planned efforts to regulate and govern groundwater away from government efforts to control individual pumping behaviours, to the identification of possibilities to anchor transformations to sustainability in collective action.more » « less
-
Abstract Object GRB 221009A is the brightest gamma-ray burst (GRB) detected in more than 50 yr of study. In this paper, we present observations in the X-ray and optical domains obtained by the GRANDMA Collaboration and the Insight Collaboration. We study the optical afterglow with empirical fitting using the GRANDMA+HXMT-LE data sets augmented with data from the literature up to 60 days. We then model numerically using a Bayesian approach, and we find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky Way dust column and moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT data set, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multiwavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the augmented data set. We find that the consideration of a jet structure (Gaussian or power law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions. Placed in the global context of GRB optical afterglows, we find that the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.more » « less
An official website of the United States government

Full Text Available